

Eric Scouten · Identity Standards Architect · Adobe

CAWG identity assertion working session

Content Authenticity 101 lightning round

C2PA data model lightning round

CAWG identity assertion data model

The interesting challenges ...

Looking for a note-taker

Slides will be posted online

Help us (OK, me) remember interesting discussion

Who's Who?

Content Authenticity Initiative

Coalition for Content Provenance and Authenticity

Creator
Assertions
Working Group

Who's Who?

Outreach · Advocacy · Education

* also name of Adobe's team

Coalition for Content Provenance and Authenticity

Technical Standards: What / How

Creator
Assertions
Working Group

Technical Standards: Who

Scope for today

Review: ericscouten.dev/cai-101

Identity assertion is a CAWG project

C2PA data model (lightning round edition)

C2PA data model Overview

An **asset** is any piece of digital media that we wish to describe.

It is described by a **C2PA Manifest**. Each asset in C2PA has an *active manifest* which describes the current asset.

That C2PA Manifest may refer to *ingredient* manifests when earlier content is incorporated.

The collection of C2PA Manifests is referred to as a C2PA Manifest Store.

C2PA data model

Assertions

Assertions are opt-in statements that cover areas such as:

- hard binding to asset's binary content (required – provides tamper evidence)
- capture device details
- identity of the content creator(s) (hello, CAWG!)
- edit actions
- thumbnail of the content
- other content (ingredients) that were incorporated into this content

CAWG identity assertion data model

Identity assertion

Status

November 2023:

Initial private drafts for review

February 2024:

Transition to public working draft under Community Specification License process

Weekly meetings with ~30 regular contributors

Identity assertion allows a credential holder to sign a data structure we call **signer_payload**, which contains:

- Tamper-evident references to one or more other assertions in the same
 C2PA Manifest (including hardbinding assertion)
- Role of credential subject with regard to the content

Other items TBD

New and separate trust signal over and above the C2PA claim generator signal.

Typically meant to indicate **subject's authorization or active participation** in production of the asset.

Identity assertion

CDDL

```
identity = {
  "signer_payload": $signer-payload-map,
                                                              ; content to be signed by credential holder
  "sig_type": tstr .size (1..max-tstr-length), ; identifies the data type of the signature
   "signature": bstr,
                                                              ; byte string of the signature
   "pad1": bstr,
  ? "pad2": bstr,
signer-payload-map = {
  "referenced_assertions": [1* $hashed-uri-map],
  ; more coming soon ... (credential holder's role in relation to asset, etc.)
```


Identity assertion

CBOR-Diag

```
"signer_payload": {
  "referenced_assertions": [
   { "url": ".../c2pa.assertions/c2pa.hash.data", "hash": b64'U9Gyz05...' },
   { "url": ".../c2pa.assertions/c2pa.thumbnail.claim.jpeg", "hash": b64'G5hfJwY
   { "url": ".../c2pa.assertions/c2pa.ingredient.v2", "hash": b64'Yzag4o5...' }
"sig_type": "cawg.w3c.vc", <-- based on type of credential presented
"signature": b64'....', <-- varies based on sig_type
"pad1": b64'....',
"pad2": b64'....'
```


Credential types currently supported in draft

X.509 Certificate

```
sig_type: "cawg.x509.cose"
signature: (COSE signature over signer_payload)
```

W3C Verifiable Credential (or VP)

```
sig_type: "cawg.w3c.vc"
signature: (new VC that specifically describes the C2PA asset)
```

Framework allows for experimentation and evolution

Credential types currently supported in draft

X.509 Certificate

```
sig_type: "cawg.x509.cose"
signature: (COSE signature over signer_payload)
```

W3C Verifiable Credential (or VP)

```
sig_type: "cawg.w3c.vc"
signature: (new VC that specifically describes the C2PA asset)
```

Framework allows for experimentation and evolution

W3C VC walkthrough

- Actor is 'ed 'r\') that references assertions
- signature is the VP

W3C VC walkthrough

Actor is asked to is to a new Cathet references assertions

signature is the new VC

W3C VC walkthrough (version 3 - current)

signature is a new VC

that describes the asset

and its creator

W3C VC walkthrough (version 3 - current)

- Actor holds a VC with assertion_method
- Actor issues new
 VC that is assetspecific

- Actor responds to a presentation request from HW/SW
- HW/SW uses VP
 as part of a new VC
 including asset specific description

- HW/SW somehow knows about actor
- HW/SW uses that info to generate a new VC that describes actor and content

signature is the new VC

W3C VC walkthrough (version 3)

```
"@context": [
    "https://www.w3.org/ns/credentials/v2",
    "https://creator-assertions.github.io/tbd/tbd"
],
    "type": [
        "VerifiableCredential",
        "CreatorIdentityAssertion"
],
...
}
```


W3C VC walkthrough (version 3)

```
""",
"issuer": {
   id: "did:example:2g55q912ec3476eba2l9812ecbfe",
   name: "Adobe Photoshop 2024"
        // could also be the person or organization creating the content
},
...
}
```


W3C VC walkthrough (version 3)

```
"credentialSubject": {
  "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
  "name": "Jane Doe",
  "c2pa_asset": {
    "referenced_assertions": [
        "url": ".../c2pa.hash.data",
        "hash": "U9Gyz05t..."
      { "url": "...", "hash": "..." },
      { "url": "...", "hash": "..." }
    // TO DO: Add other members of `signer_payload` structure as they are defined.
"proof": ...,
```


The interesting challenges ...

Broadcast application

Relying party is unknown, which is ... interesting ...

Also, time of verification is unknown

{

Identity threat model

Posit: VCs (and any digital credential, really) are themselves subject to misinformation and disinformation.

So ...

Identity verification

Who attests to the identity?

What is the threat model for credential issuance?

What is the trust model for credential in a broadcast environment?

Does this lead to recentralized identity?

Interoperability

How to navigate the rather enormous DID method space?

Given that we don't know a priori, who is playing role of subject, issuer, and relying party, how can we ensure that credentials will be *understood* when it counts?

Duplicate identity

How do I (as a relying party) differentiate John Smith from another person also named John Smith?

Bulk signing

Creating one asset is fine, but what about 1000 at a time?

What needs to be presented to credential holder when requesting consent for signature?

What about social media?

How to document control over / affiliation with various social media accounts?

Help us build the identity assertion!

- https://creator-assertions.github.io
- Weekly meetings:
 - Typically on Mondays at 0830 Pacific / 1130 Eastern / 1530 UTC
 - Contact me for invitation